
Fayoum University Faculty of Engineering, 2023, Vol: 6(1), 39-46

https://fuje.journals.ekb.eg/

ISSN Online: 2537-0634

ISSN Print: 2537-0626

DOI: 10.21608/FUJE.2022.157195.1018 39 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

University Examination Timetable Scheduling

Using Constructive Heuristic Compared to Genetic

Algorithm

Dina A. Salem1,*

1Computer Engineering Department, Faculty of Engineering, MUST University, Giza 12566, Egypt

*Corresponding author: Dina A. Salem (dina.almahdy@must.edu.eg).

How to cite this paper: Salem, D.A. (2023).

University Examination Timetable Schedul-

ing Using Constructive Heuristic Compared

to Genetic Algorithm. Fayoum University

Journal of Engineering, 6, 39-46

https://dx.doi.org/10.21608/FUJE.2022.1

57195.1018

Copyright © 2023 by author(s)

This work is licensed under the Creative

Commons Attribution International

License (CC BY 4.0).

http://creativecommons.org/licenses/by/

4.0/

 Abstract

Examination Timetable Scheduling can be defined as assigning a set of exams into

a limited number of days and periods, subject to a set of constraints, some of which

contradict each other. An issue that makes timetabling a challenging task most uni-

versities have to solve every semester. It usually takes days or even weeks to find a

solution that does not even “entirely” satisfy the universities’ constraints. Automat-

ing this task is really challenging, since timetabling problem is a Nondeterministic

Polynomial time (NP) complete problem. The most known characteristic of NP-

complete problems is that no fast solution to them is known. That is, the time re-

quired to solve the problem using any currently known algorithm increases expo-

nentially as the size of the problem grows. NP-complete problems have tremendous

solution space, so brute-force methods cannot be used . This research builds and

compares the performance of two proposed solutions; Genetic Algorithm and Con-

structive Heuristic models when both used to solve a real-world examination time-

tabling problem at Misr University for Science and Technology (MUST). This re-

search shows how the Constructive Heuristic proposed outperformed the Genetic

Algorithm in creating optimized schedules which solves all the students’ conflicts.

An easy to use, GUI desktop application was created to be used by all universities’

members, to automate their timetabling tasks, the program creates many feasible

schedules, meeting all requirements of MUST examination timetables, while reduc-

ing the pressure on the students, in seconds, which will result in saving a lot of time

and effort for the universities’ members.

Keywords

Constructive Heuristics; Examination Timetabling; Genetic Algorithm; Scheduling;

Open Access

Dina A. Salem

DOI: 10.21608/FUJE.2022.157195.1018 40 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

1. Introduction

Generally, Scheduling is the process of planning and fit-

ting specific tasks that must take place in available and

constrained time slots (Burke, 1996). Timetabling prob-

lem is an excessive restricted scheduling problem which

is applied to many fields with the goal of assigning availa-

ble (often limited) activities’ resources to fulfill essential

objectives. These fields include but not limited to military,

governmental institutions, transportation, industry, com-

munication, aviation, and education (Lewis, 2008; Qu et

al., 2009b; Aldeeb at al., 2019).

Educational institutes consume a lot of time to prepare

their different timetables including High School Timeta-

bling, University Course Timetabling and Examination

Timetabling (Ceschia et al., 2022). For decades, examina-

tion timetabling has become one of the most studied do-

mains in Artificial Intelligence. This is due to its im-

portance in many academic institutions worldwide. Ex-

amination Timetabling can be defined as assigning a set of

exams into a limited number of days and periods, subject

to a set of constraints. (Emmanuel et al., 2022)

The greater the number of constraints in the problem, the

more difficult the exam timetabling problem becomes. In

addition, some constraints contradict each other, which

makes timetabling a challenging task, and most universi-

ties have to solve it "manually" every semester. Besides,

there is a great number of different constraints that make

exam-timetabling problems different from one institution

to the other. It usually takes days or even weeks to find a

solution that does not even entirely satisfy the universi-

ties’ constraints. Timetabling constraints are of two types,

hard constraints, and soft constraints. Hard constraints

must be satisfied in a strict manner where timetabling so-

lutions that cause hard constraint violations (infeasible

solutions) are typically considered to be invalid solutions.

Soft constraints express a preference among feasible so-

lutions and are often used to measure the quality of the

schedule. A feasible solution is a one that satisfies all hard

constraints (Rossi-Doria et al., 2003).

If a schedule is feasible, then the level of satisfaction of the

soft constraints can be a measure of the quality of a time-

table. Scheduling problems are NP-complete problems;

thus, the solution space is humongous. For the examina-

tion timetabling problem, the size of the solution space

can be calculated by knowing the number of start times

(periods) and the number of exams. E.g.: if there are P pe-

riods and E exams, then there are P^E possible schedules.

An algorithm can be built that can create all the possible

schedules and creating them will not require a lot of time,

but the problem is, how to determine a schedules’ feasi-

bility and quality. Evaluating the schedule is the process

that actually requires most of the computation time. As a

result, brute forcing is not an option, so, this research pro-

poses two different methods: an optimization Algorithm

(The Genetic Algorithm - GA) and a Constructive Heuris-

tic. Both methods produced feasible schedules with the

implemented constructive heuristic approach was able to

satisfy all the soft constraints in less time.

The rest of this article is organized as follows; section 2

summarizes the main work done on examinations timeta-

bling problem and highlights the main contribution of this

research. section 3 describes the two proposed methods

to solve the problem at hand. Section 4 lists and analyzes

the results. Section 5 concludes the research.

2. Related Work

Examinations timetabling is one main topic that attracts

researchers’ attention decades ago. Changing environ-

ment and constraints from time to time makes scheduling

with all its applications a hot subject that is in deep need

of continuous modifications.

In 1996, research was conducted in an attempt to create a

general algorithm that is able to be generalized for many

institutions. Despite being able to produce flexible solu-

tions, the mentioned models suffer from running time and

intensive parameters that need tuning (Thompson &

Dowsland, 1996). Further work is done in 2007 that uses

ant colony algorithms on the online Toronto benchmark

dataset. Running time and performance of used local

search was reported as models’ drawbacks (Eley, 2007).

Dina A. Salem

DOI: 10.21608/FUJE.2022.157195.1018 41 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

An optimization algorithm called honey-bee mating was

implemented to solve the examination timetabling prob-

lem. It achieved promising results on two datasets that are

widely studied but not being tried on a real-life dataset

(Nasser et al., 2016). In 2022, a survey was done to explain

the main pros and cons of several timetabling approaches.

The survey concludes that there is still a need to enhance

the algorithms used to produce timetables (Ceschia et. Al.

2022).

Out of previously explained, this research was carried out

to solve the examination timetabling problem using MUST

dataset as a real-life example. The proposed model suc-

ceeded to produce feasible schedules in a very adequate

time satisfying all hard and soft constraints. The main con-

tribution of this research is that the created model is flex-

ible and can be adapted to many scheduling applications.

However, it is very well tailored to an Egyptian university

(as a practical example) covering all its limited resources

and resulting in an excellent performance.

3. Methodology

This research main task is to automate the examination

timetabling process by creating an easy-to-use desktop ap-

plication. This application aims to create a schedule that

satisfies all the hard constraints while satisfying as many

soft constraints as possible. Hard constraints are consid-

ered as: a student shall not have two exams at the same

time, a student shall not have three exams on the same day,

and students in special courses (courses that require more

examination time than the other courses) shall not have a

second exam on the same day as a special course. While the

soft constraints are as follows: reduce the pressure on stu-

dents by spreading their exams, schedule popular courses

first, and maximize the number of students/exams on Fri-

days. The main goal is to create a schedule that does not

only satisfy hard constraints but also the soft constraints,

as many as possible. To create such a program and auto-

mate the scheduling process, some of the faculties’ data is

used as input to the program. The dataset contains twelve

inputs that are mentioned in table 1.

After acquiring all the inputs needed, the user can then

start the scheduling process and the program will report

whenever a feasible schedule is created and its quality, the

user later can save any of the feasible schedules created

choosing the best one that fits their needs. Then the pro-

gram will write the schedule to the disk in .xlsx format with

a hardcoded template.

Table 1. List of all the inputs applied to the proposed model

3.1. Evaluation Function

The most computationally expensive function in the

whole program is the evaluation function, sometimes

called the fitness function, its role is first to decide

whether a schedule is feasible or not, then, evaluates it

to determine its quality as shown in figure 1 (quality of

the schedule is checked only if it is feasible). The evalu-

ation function is divided into two modules: Feasibility

check and Evaluation of pressure on students.

After calling the function and passing the schedule to it,

it first passes the schedule to the feasibility check

method. The feasibility check method returns true if and

only if the schedule contains all of the required courses,

no student has two exams at the same time, no student

has more than two exams in the same day and no stu-

dent has two exams in the same day if one of the exams

is of a special course. If it returns true, it will then be

List of inputs

1. First day of the exams

2. Last day of the exams

3. Excluded days from the schedule (vacations or holi-

days)

4. How many periods per day

5. Specify each period start and end time

6. Exclude specific periods from specific days e.g., Friday

usually got fewer periods than other days

7. Specify the maximum number of exams per period

8. Specify the maximum number of students per period

9. All the courses that should be on the schedule

10. All the students registered in the semester and the

courses that they are registered in

11. Specify the special courses (courses that require more

examination time than most of the courses)

12. Choose any or both constraints that should be applied

on periods (Limit the number of students per period

and limit the number of courses per period).

Dina A. Salem

DOI: 10.21608/FUJE.2022.157195.1018 42 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

evaluated and given a pressure value, which is an inte-

ger, defining how many students have consecutive ex-

ams on the same day, the lower the number is, the better

the schedule. If the schedule is not feasible it will not be

evaluated, so it will be discarded.

Figure 1. Evaluation function

Why to discard unfeasible schedules? There is a chance

that a schedule might not be created at all! True, but ac-

tually the constructive heuristic, was able to create a lot

of feasible schedules (tested on inputs of four different

semesters). The program never gets stuck! So, a new

challenge is to choose the best schedule, from the feasi-

ble ones. If the schedule is feasible (feasibility check re-

turns true), the schedule is then evaluated by the evalu-

ation function, which evaluates it based on the total

number of students that have two exams at the same

time and returns that number to the main function.

3.2. Genetic Algorithm

Genetic Algorithm (GA) is a metaheuristic approach that

is known to have good solution in many optimization

problems (Salem et al., 2012). Basic Steps of Genetic Algo-

rithm are shown in figure 2. One of the most important

decisions to make while implementing a genetic algo-

rithm is deciding the representation that will be used to

represent the solutions.

It has been observed that improper representation can

lead to the poor performance of the GA. Therefore, choos-

ing a proper representation, having a proper definition of

the mappings between the phenotype and genotype

spaces is essential for the success of a GA. Out of caring

about the order of the Alleles, so the representation cho-

sen is that of the Traveling Salesman Problem (TSP) (Ap-

plegate et al., 2007) since the permutation representation

is the most suited one.

Figure 2. Genetic algorithm basic structure

The schedule is an array of courses, where every Gene (Al-

lele’s position) represents the date and time where a

course is going to be scheduled, and the Allele itself is an

integer representing the course. All courses’ names are

encoded (mapped) to integers for this representation. An

instance is clarified in Figure 3 that represents a schedule

for two days. Day 1 starts from index [0] to index [4], while

day 2 starts from index [5] to index [9]. Each Gene (index)

in a day indicates a specific period and time, in which that

course will take place. The Allele (integer value) itself is

the course name.

Figure 3. Genetic algorithm representation of employed model.

The flow chart in figure 4 briefly explains the steps of GA

applied to reach the best reliable timetable. The selection

operator “Survival of the Fittest” is used to select the best

candidates from the current population and then all the

selected candidates are added to the mutation pool for

mating. Two candidates are then selected to mate which

Dina A. Salem

DOI: 10.21608/FUJE.2022.157195.1018 43 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

are called “Parents”. Offspring are created by applying ei-

ther crossover (combining the vector entries of a pair of

parents – Davis’ order crossover operator “OX1”) or mu-

tation (making random changes to the parents – Swap Mu-

tation) or both, to the parents. The new population now,

is, all the newly created off-springs, which are probably

more fit than their parents. The process is repeated until

a termination condition is reached.

Figure 4. Applied genetic algorithm flowchart.

Given the number of days, periods and courses, the initial

population is created, which is several randomly created

schedules. These randomly created schedules are created

by first initializing an empty array with the size of the

schedule, then randomly choose courses and add them to

random locations to fill up the array (schedule). All of the

initial population schedules are then evaluated. If the re-

sult does not have a good enough schedule, proceed with

the GA.

3.3. Applied Constructive Heuristic

A constructive heuristic is a type of heuristic method

which starts with an empty solution and repeatedly ex-

tends the current solution until a complete solution is ob-

tained. Examples of some constructive heuristics devel-

oped for famous problems are flow shop scheduling (Kou-

lamas, 1998), vehicle routing problem (Petch, 2003), open

shop problem (Bräsel, Tautenhahn, & Werner, 1993).

This research uses constructive heuristic to solve the ex-

amination timetabling problem, that works exactly as a

human who will try to create the timetable manually. It

starts by taking the inputs defined earlier at the beginning

of this section. And mostly depends on the order of the list

of courses. Because it fills the schedule starting from the

first, based on the hard and soft constraints that are hard-

coded in the program, once it finds a suitable slot for that

course it will place it in that slot, then moves on to the next

course from the courses list. It keeps filling slots by

courses until it reaches one of two end points, either all

courses have been scheduled or reach what is called a

dead-end. Dead-ends usually occur when the program

succeeds to schedule majority of the courses but fails to

schedule two to ten courses. This failure usually takes

place when the available empty slots are not suitable for

the remaining courses and do not meet the required con-

straints. The steps applied to the constructive heuristic

approach to generate the required examination timetable

are illustrated in figure 5.

Inputs to the model are list of courses, maximum exams

per day for a student and a preliminary schedule (if avail-

able). It starts with picking the first course from the list of

courses. Then it loops overall schedule slots until a feasi-

ble slot is found and place the course in that slot. It keeps

repeating to pick the next course and find the appropriate

slot. If all courses are scheduled successfully, it returns the

schedule. If some courses are not scheduled, it returns the

schedule and the list of courses that were not scheduled.

After calling the heuristic function, if it fails, a second call

can take place, but with the list of courses that are re-

turned, which are the courses that were not successfully

scheduled. However, the program changes the number of

Yes

Output the

Best

Schedule

End

Start

Evaluate all

Schedules

Check Inputs
Get Inputs

Generate Initial Population (n schedules)

Time Limit Reached?

Mutation and Crossover

Select Top n Schedules

New Population

No

Dina A. Salem

DOI: 10.21608/FUJE.2022.157195.1018 44 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

exams per day which allows for a very good chance that

these courses will then be scheduled. So, as a first try the

program schedules all courses by setting the maximum

number of exams to one. Then, call the heuristic function.

If it fails, the program calls it again, with the list of un-

scheduled courses and the created schedule that is miss-

ing those courses, then increment the maximum number

of exams to two. This proposed approach eventually suc-

ceeds to reach very good solutions.

Figure 5. A Constructive Heuristic Flow Chart.

4. Results

To evaluate the two proposed models, a real dataset is

used from Faculty of Engineering-Misr University for sci-

ence and Technology (MUST). The faculty operating in a

credit hours system, offers three semesters per year: Fall,

Spring and Summer. About 220 courses are available per

semester, and the final exams usually takes around 18

days (including holidays), with 3 periods per day. So, the

number of possible schedules is 220�� or 3 � 10�	
.

An application is successfully created that can save about

four weeks of time for faculty members who are responsi-

ble for producing the examination timetable schedule. In

addition to helping the students perform better in their ex-

ams by reducing the number of exams they have in each

day.

4.1. Genetic Algorithm Results

The proposed GA with the applied parameters’ optimiza-

tion was able to produce a feasible schedule in an average

time of 4 minutes. However, the output schedule despite

being feasible satisfied the hard constraints only, but not

the soft constraints. Figure 6.a and 6.b shows the results

of the applied GA model. Figure 6.a clarifies the average

time when applying the final GA model to the faculty da-

tasets of different semesters. Figure 6.b assumes that the

accepted fitness score for a feasible schedule is 10 and ac-

cordingly concludes that GA wastes a lot of time trying to

just create a feasible schedule.

4.2. Constructive Heuristic Results

At first, Constructive heuristic (CH) was proposed to be

used to create the initial population for the GA to reduce

time. It creates a population of feasible schedules and pass

them to the GA as the initial population so that the GA can

optimize them and produce better results.

Figure 6.a. Results of Applying the Final GA Model to Different

Datasets.

Inputs
Was a schedule

passed?

Create an

empty

schedule

Select the next course

Select the next slot from the

schedule

Is it feasible?

Place course in this slot

Last course?
Return (un-scheduled courses &

schedule)

No

No

Yes

No Yes

Yes

0

1

2

3

4

5

6

7

Spring 2020 Summer 2020 Fall 2020 Spring 2021

4.3

6.5

3.5

5.2

T
im

e
in

 m
in

u
te

s

Dataset

Time for GA to produce a feasible schedule

Dina A. Salem

DOI: 10.21608/FUJE.2022.157195.1018 45 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

Figure 6.b. Time taken by GA to reach a fitness score equals 10

But after several trials optimizing the constructive heuris-

tic and rewriting its code trying to make it produce the

best results, the constructive heuristic was able to pro-

duce feasible and optimized schedules on its own, in a

matter of seconds with the results recorded in figure 7.

Figure 7. Results of applying CH model to different datasets.

4.3. GA versus CH

To fully evaluate the performance of the two proposed

models on the mentioned dataset, a separate run is car-

ried out to record the number of students with two exams

at the same day. In this run time parameter is set to 1 mi-

nute and the same four datasets are used, and results are

recorded in Figure 8.

Figure 8. Results chart to compare GA and CH.

5. Conclusion

This research proposed two different methods to solve the

examination timetabling problem for MUST (as an exam-

ple), genetic algorithms and heuristic approach. Both tech-

niques are implemented using python programming lan-

guage and a GUI scheduler is created based on the MVC de-

sign pattern to be used to automate the process of sched-

uling.

The implemented approaches were tested on 4 different

datasets. This showed that the constructive heuristic is

way faster and produces much better schedules than the

GA., and it worked flawlessly.

As the proposed CH model was proven to work properly

on MUST engineering datasets, it can be further applied to

other faculties of the same university as constraints are

very similar. Although CH approaches are tailored to spe-

cific problems, but they are generally characterized by be-

ing flexible which makes the model easily transferred to

other universities with slight modifications. The model can

also be generalized to many examinations timetabling in-

cluding schools and online exams.

References

Aldeeb, A. B., Al-Betar, M. A., Abdelmajeed, A. O., Younes, M. J.,

AlKenani, M., Alomoush, W., Alissa, K. A., & Alqahtani, M. A.

(2019). A Comprehensive Review of Uncapacitated University

Examination Timetabling Problem. International Journal of

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Spring 2020

Summer 2020

Fall 2020

Spring 2021

Students with 2 exams

D
a

ta
 S

e
t

Students with 2 exams on a day, in a 1 Minute Run

Constructive Heuristic Genetic Algorithm

0

2

4

6

8

10

12

F
it

ne
ss

 S
co

re

Time in minutes

GA Convergence

Dina A. Salem

DOI: 10.21608/FUJE.2022.157195.1018 46 Fayoum University Faculty of Engineering, 2023, Vol: 6(1)

Applied Engineering Research. Vol. 14 (pp. 4524-4547). Re-

search India Publications.

Applegate, D. L., Bixby, R. E., Chvatal, V. & Cook, W. J., (2007). The

Traveling Salesman Problem: A Computational Study. Prince-

ton University Press, United States.

Bräsel, H., Tautenhahn, T. & Werner, F. (1993). Constructive heu-

ristic algorithms for the open shop problem. Computing,

51(pp. 95-110).

Burke, E. K., Elliman, D. G., Ford, P. H. & Weare, R. F. (1996). Ex-

amination timetabling in British universities - A survey. In:

Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated

Timetabling. LNCS. Vol. 1153 (pp. 76–92). Springer, Heidelberg

Ceschia, S., Gaspero, L. D. , & Scherf, a., (2022). Educational time-

tabling: Problems, Benchmarks, and State-of-the-art Results.

European Journal of Operational Research. In press.

https://doi.org/10.1016/j.ejor.2022.07.011.

Eley, M. (2007). Ant Algorithms for the Exam Timetabling Prob-

lem. In: Burke, E.K., Rudová, H. (eds) Practice and Theory of

Automated Timetabling VI. PATAT 2006. Lecture Notes in

Computer Science, vol 3867. Springer, Berlin, Heidelberg.

Emmanuel, M. C., Chidimma, N. C., Sunday, B. T. & Ejike, C. O.

(2022). Re-Engineering of Examination Timetabling Genera-

tion and Invigilation Scheduling System. International Journal

of Innovative Science and Research Technology Vol. 7 (pp. 662–

634). Springer, Heidelberg

Koulamas, C. (1998). A new constructive heuristic for the flow-

shop scheduling problem. European Journal of Operational Re-

search, Vol. 105(1), (pp. 66 – 71)

Lewis, R. (2008). A survey of metaheuristic-based techniques for

university timetabling problems. OR spectrum, Vol. 30 (1), (pp.

167–190).

Petch, R. J. (2003). A multi-phase constructive heuristic for the

vehicle routing problem with multiple trips. Discrete Applied

Mathematics, Vol. 133(1-3), pp. (69 – 92).

Qu, R., Burke, E. K., McCollum, B., Merlot L. T. & Lee, S. Y. (2009b).

A survey of search methodologies and automated system de-

velopment for examination timetabling. Journal of scheduling,

Vol. 12 (1), (pp. 55–89).

Rossi-Doria, O. et al. (2003). A Comparison of the Performance

of Different Metaheuristics on the Timetabling Problem. In:

Burke, E., De Causmaecker, P. (eds) Practice and Theory of Au-

tomated Timetabling IV. PATAT 2002. Lecture Notes in Com-

puter Science, Vol 2740. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-45157-0_22

Sabar, N.R., Ayob, M., Kendall, G., & Qu, R. (2012). A honey-bee

mating optimization algorithm for educational timetabling

problems. Eur. J. Oper. Res., 216, 533-543.

Salem, D. A., Abulseoud, R. A., & Ali, H. A. (2012). K5. merging ge-

netic algorithm with different classifiers for cancer classifica-

tion using microarrays. 2012 29th National Radio Science

Conference (pp. 659-666). doi: 10.1109/NRSC.2012.6208579.

Thompson, J., Dowsland, K.A. (1996). General cooling schedules

for a simulated annealing based timetabling system. In: Burke,

E., Ross, P. (eds) Practice and Theory of Automated Timeta-

bling. PATAT 1995. Lecture Notes in Computer Science, vol

1153. Springer, Berlin, Heidelberg.

