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  Abstract 

International scholars have recently demonstrated significant interest in fractional order 
filters (FOF) due to their greater design freedom and continuously stepped stopband at-
tenuation rate. This paper presents a literature review on designing a fractional order 
filter based on the metaheuristic approach, which provides an optimum design technique 
and less passband and stopband error. The nonlinear, non-uniform, multidimensional, 
and multimodal FOF design issue error landscape is heavily exploited by the metaheu-
ristic global search method. 
The algorithm's optimal coefficient values, which closely approximate the magnitude 
response of the ideal FOF, are reached at the completion of its repeated search routine. 

Keywords 

Fractional calculus; Fractional order filter; FPA. 

1. Introduction  

Calculus in the fractional domain [1] recently had a wide-

spread application in several engineering areas. The devel-

opments in fractional calculus applications were slow 

mainly due to the absence of a universally accepted geomet-

rical and physical interpretation; this result in the whole 

field is limited to just a theory [2]. However, there has been 

considerable interest in the topic in recent years. Research-

ers have found that fractional-order models can represent 

systems better than integer-order ones despite the need for a 

universally accepted interpretation. The field has seen a 

steep rise in publications and has grown, but it is still far 

from conceptual completion, particularly in the theories, ap-

plications, and implementation methods [3]. 

Fractional calculus is viewed as a generalization of integer 

order calculus. In other words, the integration and differen-

tiation for the integer order are exceptional cases of the cor-

responding operations for the fractional order. Since the 

mid-twentieth century, this mathematical tool has been used 

to create better models for simple and complex physical sys-

tems. Integer order (Newtonian) differential operators are 
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local, while most fractional calculus operators are non-local 

except at integer points.  

This allows the fractional order operator to capture the 

memory of the model and even extrapolate between past and 

future behaviour. This leaves Newtonian calculus as a spe-

cial case and a subspace of fractional calculus. Fractional 

differentiation is often used to model phenomena exhibiting 

non-standard dynamical behaviors [4]. 

The Riemann-Liouville (R-L) definition and the Grunwald-

Letnikov (G-L) definition are the two main definitions of 

differentiation and integration in the fractional domain  

(differ-integration)[5]. The G-L formula is a numerical dif-

ferentiation formula extracted from the backward finite dif-

ference formula. As per the G-L method, the fractional order 

differentiation of a function 𝑓(𝑡) is given by Eqn. (1) [5] 

𝑫𝒕
𝜶𝒇(𝒕): = 𝒍𝒊𝒎

𝒉→𝟎
 

𝟏

𝒉𝜶
∑  𝒋 𝟎 (−𝟏)𝒋

𝜶
𝒋 𝒇(𝒕 − 𝒋𝒉), (1) 

where, 
𝛼
𝑗 =

( )

( ) ( )
 represents the binomial coef-

ficients, and, Γ(⋅) denotes the gamma function. 

The formula (1) is considered a generalization case of differ-

entiation as 𝛼 ∈ 𝑅 . The Laplace transform of the G-L frac-

tional differ-integration with zero initial conditions is given by 

Eqn. (2). 

∫  
𝟎

𝒆 𝒔𝒕 𝟎𝑫𝒕
𝜶𝒇(𝒕)𝒅𝒕 = 𝒔𝜶𝑭(𝒔).             (2) 

The R-L definition of fractional calculus is a continuation 

of the 𝑛-fold successive integration process. As per the R-

L method, the fractional differentiation of a function 𝑓(𝑡) 

is given by Eqn. (3) [6] 

 𝟎𝑫𝒕
𝜶𝒇(𝒕): =

𝟏

𝜞(𝒏 𝜶)

𝒅𝒏

𝒅𝒕𝒏 ∫
𝒇(𝝉)

(𝒕 𝝉)𝜶 𝟏

𝒕

𝟎
 𝒅𝝉, (3) 

 where 𝒏 − 𝟏 < 𝜶 < 𝒏. The Laplace transform of the R-L 

fractional differ-integration is given by Eqn. (4). 

∫  
𝟎

𝒆 𝒔𝒕 𝟎𝑫𝒕
𝜶𝒇(𝒕)𝒅𝒕 = 𝒔𝜶𝑭(𝒔) − ∑  𝒏 𝟏

𝒌 𝟎   𝒔𝟎
𝒌𝑫𝒕

𝜶 𝒌 𝟏𝒇(𝒕)
𝒕 𝟎

. (4)  

This paper deals with the analysis, design and applications of 

meta-heuristic algorithms in the design of fractional order 

filters and the implantation using fractance devices. A 

fractance device is an electrical component that has an 

impedance of  𝑍(𝑠) = 𝑘𝑠 ⇒ 𝑍(𝑗𝜔) = 𝑘𝜔 ∠(𝜆𝜋/2 ). The 

fractance components response, such as the fractional order 

inductor (FOI) and the fractional order capacitor (FOC) can be 

generated by varying 𝜆  in the range of 0 < 𝜆 < 1 

and −1 < 𝜆 < 0, respectively. Since their phase responses are 

frequency independent, these elements are also known as 

constant phase elements (CPE). It is appropriate to mention 

that for the situation when λ=1 and λ=-1, respectively, the 

impedance of a conventional/classical inductor and the 

capacitor is realized. 

The conventional continuous-time filter in analog signal 

processing is typically written as a series of rational 

polynomials with the Laplacian operator 𝑠 ; as a result, only 

concerning the power 𝑛  can the stopband attenuation 

characteristics of these integer order filters be tuned 

progressively. For instance, lowpass first and second-order 

filters can only explicitly display a roll-off of 

−20 𝑑𝑒𝑐𝑖𝑏𝑒𝑙𝑠 (𝑑𝐵)/𝑑𝑒𝑐𝑎𝑑𝑒  and −40 𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 , 

respectively [7]. 

In case the rational functions are written in terms of the non-

integer order Laplacian operator 𝑠 , where 0 < 𝛼 < 1, the 

limitation in the responses of the conventional filters can be 

removed. For instance, a (1+α) order LPF has a gradient of 

-20×(1+α) dB/ decade, meaning that depending on the 

value, the roll-off can change within slope values of (-20,-

40)dB/ decade, based on the value of α. Such a generalized 
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class of filters is called the non-integer/fractional order 

filter. 

The integer-order Laplacian operator is merely a particular 

instance of the non-integer Laplacian operator when α=1, 

which should be emphasized [8]. 

2. Related Work 

i- Basic concepts of FOF design: 

Much research has been done using different 

approximations of filters into the fractional-order domain. 

In [9] and [10], the author suggested designing filters using 

fractional order capacitors; when their value increases, these 

systems have a better magnitude response in the passband 

area. Freeborn designed FLPF in [11], and a higher-order 

prototype equation for the filter was designed using 

𝐻 (𝑠) = . By modifying 𝜏 , 𝜏  and τ3, the 

passband of the magnitude response can be shaped without 

altering the stopband region. By applying the CFE method 

there are equations relate These coefficients and the fractional 

order 𝛼. Therefore, through careful selection of 𝜏  𝑎𝑛𝑑 𝜏 , the 

passband region can be shaped to closely resemble the 

passband of a Butterworth response while maintaining the 

desired fractional step through the stopband. 

The higher order transfer function equations, based on 

using the standard Butterworth polynomials, were given by 

𝐻 (𝑠) =
( )

𝐵𝑛−1(𝑠)
, where 𝐵 (𝑠) is a standard Butterworth 

polynomial of order 𝑛 ∈  Ν. 

 

ii- Previous attempts on FOF design: 

Many other authors suggested approximating fractional 

filter transfer functions using rational integer transfer 

functions to create FOLPFs [12, 13, 14]. Ali et al. reported 

a generalized method to meet FOLPF criteria in [15]. 

 Acharya et al. proposed a design strategy and stability 

study using the complex w-plane in [16] to construct 

FOLPFs.  

In [17], Freeborn used a least square error (LSE)-based 

optimization approach to identify the ideal coefficient 

values for three different transfer functions that approximate 

the ideal (1+α) order Butterworth filter. The prototype 

equation that is used is the stepped transfer function. An 

interpolation function between the order of the fractional 

filter and the coefficients of the fractional transfer function 

was introduced. Then the performance was measured 

through the least square error equation that is given 

by: 𝐿𝑆𝐸 = ∑ [|𝐻 (𝜔 )| − |𝐻 (𝜔 )|] , where 

|𝐻 ( )| 𝑖𝑠  the FO magnitude at frequency  , 

|𝐻 (𝜔 )| is the first-order HP Butterworth magnitude at 

frequency 𝜔 , and 𝑛  is the total number of compared 

frequency points. 

In [18], the author discussed a quick and easy method for 

obtaining a fractional order Chebyshev-like response based 

on the conventional integer order poles. 

The core of the proposed methodology is the generation of 

fractional order transfer functions utilizing the poles of the 

well-known Chebyshev filter of integer order. 

The main idea is to construct the transfer function's 

denominator as Eqn. (5a): 

𝐷(𝑠) =  ∏ (𝑠 − 𝑝 ) (5a) 

 𝐻(𝑠) =
( )

           (5b) 

Where l = 2⌈ ⌉ and n is the integer order, p is the integer 

order poles, and 𝛾 is the fractional pole powers, Eqn (5b) 

gives the final form of the transfer function.  

In Addition, the author in [19] introduces inverse 

Chebyshev filters in the fractional domain. Inverse 
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Chebyshev lowpass filters are generally realized using 

lowpass notch circuits of second order. Then this transfer 

function was extended to the fractional order domain.  

The new transfer function had an order (1 + 𝛼 ), and its 

unknown coefficients were given using a curve fitting 

technique to optimize the response error between the integer 

transfer function and the fractional one.  

This result in small-size circuit implantation due to 

increasing the degree of freedom in the design by 

introducing the parameter 𝛼.  

A straightforward approach to extend the Chebyshev filter 

into the fractional domain is done by converting the 

Chebyshev polynomial to the fractional domain Eqn. (6), 

this is achieved by converting the integer order N into 

fractional order 𝜎, which results in 𝑇 (𝑥) polynomial [8]. 

𝑇 (𝑥) =
cos 𝑁𝑐𝑜𝑠 (𝑥)  |𝑥| ≤ 1

cosh 𝑁𝑐𝑜𝑠ℎ (𝑥)     |𝑥| > 1    
,   (6) 

Inserting the generated polynomials in the magnitude 

response equation Eqn. (7), result in Chebyshev LPF 

response, where 𝜀 is the peak ripple in the pass band area. 

𝐻 (𝜔) =
( )

 ,                (7) 

Using the same technique to generate a high pass filter is 

done by replacing 𝜔 →  in the low pass filter magnitude 

response equation 𝐻 (𝜔).  

Figure 1 shows the Chebyshev LPF generated using the 

magnitude response equation based on polynomials Eqn. (6) 

in a different order. Whereas Fig. 2 shows the counterpart 

high pass filter. It is clear from Fig.1 that the step toward the 

fractional domain in filter design introduces more degree of 

freedom in the design parameters such that a more accurate 

gradient slope is realizable to be more precise with the 

applications.  

 

 

The fractional order bandpass filter is achieved by cascading 

two sections, one for fractional low pass filter and the other 

for fractional high pass filter; Eqn describes this. (8). 

𝐻 (𝜔) = 𝐻 (𝜔) ×  𝐻 (𝜔) .     (8) 

Figure 3 shows symmetric when 𝜎 = 𝜎 . When 𝜎 ≠ 𝜎  

an asymmetric slope at band pass filter response is resulted 

at different orders for FLPF and FHPF. 

Figure 1: Fractional Chebyshev low pass filter 

𝜔 

Figure 2: Fractional Chebyshev high pass filter 
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It is worth noting that the techniques reported in [11],[15] 

and [18] employ a fractional order prototype equation to 

approximate the ideal FOLPF. Implementing such transfer 

functions can be done using fractance devices.  

The fractional parameter can be viewed as a tuning key that 

adds flexibility to the system dynamics. Even though research 

is being done to physically implement the FOC [18] and [19], 

these fractance devices are not yet accessible on the market. 

As a result, using the traditional/classical (integer-order) 

circuit parts to create the circuit is a more straightforward 

design technique when using the integer order approximations 

to realize the FOLPFs.  

The techniques described in [11],[12] approximate the FOLPF 

with an integer order approximation; however, the design 

approach uses a suboptimal method like Oustaloup and 

continuing fraction expansion (CFE) [20]. This should be 

acknowledged as well. 

In [20], the fractional-step filters are designed using a 

synthesis approximation technique (fraction expansion 

(CFE)). He showed that using a maximum absolute 

magnitude error (MAME) analysis Eqn. (9), s.t. N 

represents the number of frequency point distributions, the 

shortcoming of CFE approximation in comparison with 

optimization techniques as approximation error is 

dependent on the fractional order, so it becomes large for 

higher order; this result in the design cannot be achieved at 

the whole design required band of frequency.  

𝑀𝐴𝑀𝐸 =  𝑚𝑎𝑥 ∈ {|𝐻 (𝜔 ) − 𝐻 (𝜔 )|)}  . (9) 

The authors in [21] used curve fitting techniques to 

approximate FOLPF, such as the Sanathanan–Koerner (SK) 

least square iterative method, which approximates the integer 

order transfer function. However, they result in higher-order 

integer transfer function approximations and do not have 

optimal approximations. 

3. Metaheuristic Algorithms:  

Complex optimization problems, or those that can't be 

solved optimally using a deterministic approach in a 

reasonable amount of time, are well known for responding 

well to metaheuristic methods. The three main uses of 

metaheuristic approaches are to solve problems quickly, 

handle enormous issues, and create more reliable 

algorithms. These methods are flexible and simple to apply 

and design. In general, metaheuristic algorithms mimic 

natural events by combining rules and randomization [22]. 

The evolution strategy, genetic algorithms (GA), and 

artificial immune (AI) are a few biological systems that 

modify metaheuristic algorithms. Particle swarm 

optimization (PSO), bee colony optimization (BCO), 

bacterial foraging optimization algorithms (BFOA), and ant 

colony optimization are examples of ethnological 

phenomena (ACO). Swarm algorithms, micro-canonical 

annealing, and threshold-accepting techniques are physics 

phenomena [23]. 

Figure 4 summarizes the categorization of the meta-heuristic 

algorithms; it shows that swarm intelligence and 

evolutionary computation are two categories for 

metaheuristics based on population. The behaviour of social 

insect colonies or animal societies serves as the model for 

the broader phrase "swarm intelligence" another example of 

Figure3: Symmetric Fractional Chebyshev bandpass filter 



Amgad et al. 
 

 

DOI: 10.21608/FUJE.2023.177757.1032 6 Fayoum University Faculty of Engineering, 2023, Vol: 6(2)

 

a metaheuristic algorithm inspired by musical phenomena is 

the harmony search (HS) algorithm. Single-solution-based 

and population-based metaheuristic algorithms can also be 

used to classify metaheuristic algorithms. The noising 

technique, TABU search, SA, and TA are a few examples of 

single-solution-based metaheuristics [24].  

 

Most optimization algorithms have parameters involved that 

guide their direction towards the global best solution. These 

parameters have utmost importance since a deviation from a 

"reasonable" value can bring about divergence, so the 

convergence curve metric measures the value of the objective 

function versus the computation time during the 

minimization (model calibration) [25].  

4. Filter approximation using 
metaheuristic algorithm: 

The application of the metaheuristic algorithm on filter 

design is based on finding the optimal coefficient of the 

approximated transfer function.  

The issue of approximating filter equations with integer order 

prototype equations is unquestionably an optimization 

problem, even though synthesis approximation approaches are 

non-optimal. It is possible to define the objective function for 

such an optimization issue to minimize the difference between 

the ideal response and the response obtained from the proposed 

integer order prototype equation approximation. 

The suggested model's numerator and denominator 

polynomial coefficients serve as the optimization process's 

design variables. Be considerate that the denominator 

polynomial's existence causes the transfer function of the 

suggested filters to yield a very nonlinear cost function. 

This optimization problem has multiple dimensions since all 

of the coefficients of the integer order filter are used as the 

decision variables. Additionally, the nature of this specific 

optimization problem is multimodal; therefore, a global 

optimization search technique can guarantee a more 

accurate approximation compared to the CFE-based 

approach presented in [20] for constructing FOLPFs. 

The prototype function describes the model in the general 

form given by Eqn. (10) and is called a fully fractional 

transfer function. When 𝛽 = 1, the function, in this case, is 

called the fractional stepped transfer function is given by Eqn. 

(11). It is worth mentioning that the general method to 

construct the denominator of Eqn. (11) for any higher order 

step fractional prototype equation is 𝐷(𝑠) =  𝑠 ∑ 𝑎 𝑠 +

∑ 𝑎 𝑠 + 1.   

In the case of equally order exponents, the prototype function 

is given by equation Eqn. (12). Figure 5 shows the 

convergence curves using different prototype equations. The 

algorithm reaches constant value during the optimization 

process for all orders at each filter type. That means the 

number of iterations is enough to find optimal solutions [26].  

 

 

Figure 4: Metaheuristic algorithm mind map [22] 
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Table (1) (at the end of the paper) summarizes the research 

works that focus on this area; the basic idea of all these works 

is to find the coefficients of the prototype equation that 

approximated the specific filter magnitude response.  

𝐻 (𝑠) =
×

,  (10) 

𝐻 (𝑠) =
×

 , (11)                     

𝐻 (𝑠) =
×

 .       (12)                

The method used in [27] approximates coefficients for 

various normalized FLPF transfer function situations. 

However, this approach concentrated on several parameters, 

such as transition bandwidth and maximum permitted peak, 

and was based on a limited search for objective functions.  

In [28], the author shows that FOF can provide precise 

attenuation control, i.e. -3  

dB frequency and stopband attenuation. Integer-order filters 

yield –20n dB/decade stopband  gradients, where n is the 

integer order. However, fractional order provides greater 

control with –20(n + α) dB/decade stopband attenuation, 

where α is any real positive value less than 1. The (n + α) 

FOF can provide a further degree of freedom that can 

provide more precise control over the attenuation slope as 

compared to integer-order filters of order n. In another case 

in [30], a fractional transfer function is approximated using 

an integer order transfer function; this technique is useful to 

reduce the circuit components used in filter implementation. 

For example, a 1.5th-order Butterworth filter can be realized 

using a single operational amplifier (op-amp), one FO 

capacitor, one conventional capacitor, and three resistors.  

In contrast, four current feedback op-amps (CFOAs), three 

conventional capacitors, and eight resistors are needed to 

create a third-order approximation of the same filter with six 

decades of design bandwidth. A study case using a 

metaheuristic algorithm to approximate the magnitude 

response of the fractional Chebyshev filter was introduced in 

[29]. The implementation was achieved using voltage mode 

Sallen-Key topology. The author used two fractional 

Chebyshev polynomials to verify the reliability of the 

methods. The FOE was approximated using Valsa’s 

approximation and verified using LT-spice circuit simulation.  

Eqn (10) gives the approximated transfer function used in 

[29]. Figures 6a and 6b compare the original magnitude 

response based on second and third-order fractional 

Chebyshev polynomial to the optimal prototype function 

equation Eqn. (10). The error curve is bounded, and the 

maximum error is 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 0.5%   at the stopband area 

and 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 0.2%  at the transition area. 

 

 

 

 

 

 

The approximation is achieved using the magnitude response 

equation Eqn. (6) fractional Chebyshev polynomial results 

from solving the Chebyshev differential equation in the 

fractional domain [17].  

 

Figure 5: Convergence Curves Using a Different Approximation  

Figure 6: A comparison between MATLAB simulation and 
LTspice circuit simulation of the example filter 
implementation (a) Case second-order Chebyshev 
polynomial,  (b) Case third-order Chebyshev polynomial   
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In [30], the authors target controlling some filter 

specifications, which are the transition bandwidth, the stop 

band frequency gain and the maximum allowable peak in the 

filter pass band. This was achieved by using a multi-objective 

optimization technique to design a FOLPF. The circuit 

realization was done through second-generation current 

conveyor (CCII) based fractional low-Pass filter. The design 

procedure proposed in this work showed the extra degree of 

freedom the FO introduced by fractional calculus to filter 

design.  

It is worth mentioning that in [33], the author applied a new 

idea called series optimization, symbolized by: First meta-

heuristic approach to Second meta-heuristic approach. The 

first population is generated from the first meta-heuristic 

approach and becomes an input for the second meta-heuristic 

approach to generate the optimal solution. This technique 

enabled him to benefit from the merits of two different meta-

heuristic algorithms named cuckoo search algorithm (CSA) 

and interior search algorithm (ISA) to approximate integer 

order Butterworth low pass filter. Based on optimal 

coefficients of the prototype function 𝐻 (𝑠) =

 
.  The mechanism of series optimization 

𝐶𝑆𝐴 𝑡𝑜 𝐼𝑆𝐴 is:  turning the best solution from CSA to be 

the initial solution for ISA, this lead to more optimal and fast 

solutions. 

In [34], the author used the genetic algorithm to perform a 

stochastic optimization search of the target space by 

artificially simulating the biological evolution process in 

nature [35] based on the prototype function that Eqn 

represents. (11). This transfer functs used for different values 

of n to approximate the magnitude response generated from 

Eqn. (7) based on polynomial represented by Eqn. (6). 

The generated prototype function coefficients that approximate 

filter response is compared with other prototype functions 

generated from synthesis approximation methods or classical 

optimization methods based on the metrics described below:  

Passband error (PE): The error observed in the passband 

(till 1 rad/s) when compared to the ideal magnitude response. 

PE = 20 × log
∑  || .( )| | ( )||

dB , (13) 

where K = 5000 and 0.01 ≤ 𝜔 ≤ 1. 

 Stopband error (SE): The error observed in the stopband 

(from 1 to 10 rad/s) when compared to the ideal magnitude 

response. 

SE = 20 × log  
∑  || .( )| | ( )||

dB , (14) 

where K = 5000 and 1≤ 𝜔 ≤ 10. 

Algorithm SE PE 

Meta-heuristic  -95 dB -80 dB 

classical optimization  -36 dB -26 dB 

 

The parameter K was chosen based on the generated line 

space in the MATLAB simulation, as K increase the precision 

increase, In short, if we increase the value of   K more than 

this limit, there will be no noticeable change [36].   

Table 2 shows the difference between approximation 

approaches; meta-heuristic is achieved using flower 

pollination algorithm (FPA) algorithm, classical optimization 

is achieved using a curve fitting technique performs transfer 

function estimation using the Sanathanan–Koerner (SK) least 

square iterative method. The study used SE Eqn.(13) and PE  

Eqn.(14) error as performance metrics in the case of 

Chebyshev FLPF at order  𝛼 = 1.7, K= 5000 is the number 

of frequency points and they are logarithmically spaced in the 

region ω ∈ [1, 104] × 2π rad/sec. The upper and lower 

bounds for the components of the coefficient’s vector of the 

Table2: Comparison metrics at order =1.7 using different 
approximations technique [29], [36]. 
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transfer function Eq.(10) are 107 and 1, respectively, while the 

upper and lower bounds for the exponents are 1 and 0.7, 

respectively. This indicating how useful the use of 

metaheuristic approaches gives the best performance. The 

metaheuristic approach approximates the ideal magnitude 

response to a realizable fractional prototype function, which 

enables approximation all over the frequency band and 

decreases circuit complexity.   

5. Conclusions and future work 

Nature-inspired metaheuristic search techniques are useful for 

finding the optimal search variables (multidimensional 

optimization problems). The convergence speed of the meta-

heuristic algorithms toward the global (or nearly global) 

optimal results is better than traditional techniques. 

The robustness and the capability of this tool to solve 

multimodal systems have been verified throughout a study 

example that approximates the magnitude response to fully 

fractional prototype functions. The error at the stable output is 

bounded to be less than 2% within a few iterations, and the 

approximation is achieved over the whole frequency band.  

The literature indicates that the filter magnitude response 

approximation-based meta-heuristic algorithm needs to be 

better covered. Future work could establish by using a similar 

order transfer function. This approach is useful in 

interpolating fractional transfer function coefficients as a 

function of fractional order 𝛼.  

Additionally, using a metaheuristic approach, Legendre and 

elliptic filter types are not approximated from their 

magnitude response equation. Further studies should 

investigate the methods to generate fractional polynomial 

modelling for this filter type. These filter types are widely 

used due to their phase characteristic, which is nearly linear 

in the pass region. This gives a maximally-flat group delay, 

which becomes a good choice for pulse circuits because 

ringing and overshoot are minimized and have poor 

attenuation slopes. 

Finally, the series optimization technique is useful and should 

be investigated in all metaheuristic algorithm types. 
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Table1 : Summary of filter design-based optimization techniques

Ref. Prototype function Frequency response data Optimizer used 
Absolute 

error 
Order of filter 

[27] 𝐻 (𝑠) =
𝑘

𝑠 + 𝑘 𝑠 + 𝑘 𝑠 + 𝑘
 Magnitude response equation of FLPF based on 

fractional Chebyshev polynomial. 
FPA <2% This work targets the orders between (1,3) 

[28] 𝐻 (𝑠) =
𝑘

𝑠 + 𝑘 𝑠 + 𝑘 𝑠 + 𝑘
 Magnitude response of first-order Butterworth 

filter. 

modified particle 

swarm optimization 

(mPSO) 

<3% This work targets orders between (1,2) 

[12][29] 𝐻 (𝑠) =
𝑘

𝑠 + 𝑘 𝑠 + 𝑘 𝑠 + 𝑘
 Magnitude response of first-order Butterworth 

filter. Implement FLPF. 

least squares error 

(LSE) 
<2% This work targets orders between (1,2) 

[30] 𝐻 (𝑠) =
𝑘

𝑠 + 𝑘 𝑠 + 𝑘
 Flat response of LP Butterworth filter. 

 

A multi-objective 

optimization 

technique 

This work targets specific orders and the error is specified 

by 𝑡ℎ𝑒 𝜖 value. 

[31] Integer order (ITF) Magnitude response of fractional order 

Butterworth filter. 

Gravitational Search 

Algorithm (GSA) 
<3% This work targets orders between (1,2) 

[32] Integer order (ITF) Magnitude response of a fractional order 

system. 

colliding bodies 

optimization (CBO) 
<2% 

This work targets FOS of orders 𝛼, such that 

0 < 𝛼 < 1 

[33] 𝐻 (𝑠) =
𝑘

𝑠 + 𝑘 𝑠 + 𝑘 𝑠 + 𝑘
 Magnitude response of fractional Order Low 

Pass Butterworth Filter. 

Series optimization 

using 𝐶𝑆𝐴 →  𝐼𝑆𝐴. 
Small error This work targets orders between (1,2) 

[34] 𝐻 (𝑠) =
𝑘

𝑠 + 𝑘 𝑠 + 𝑘 𝑠 + 𝑘
 Magnitude response of fractional Order 

Chebyshev lowpass filters 
Genetic algorithm < 2% This work targets orders between (1,4) 


