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  Abstract 

The flexural plastic hinge (PH) length is a critical parameter for reinforced con-
crete (RC) frames subjected to lateral load. In this work, a review of past studies 
for introducing empirical equations for estimating the flexural PH length (lp) of RC 
frames was introduced. Another key aspect explored in this paper is to study the 
effect of different available lp equations on the overall nonlinear structural re-
sponse of RC frames. Therefore, ten lp equations were selected from this review 
for simulating the nonlinear behavior of two RC frames with available experi-
mental data. Each frame was analyzed ten times with alternative lp values under 
pushover analysis using SAP2000 software. The two modeled frames displayed an 
average error ranging from 12.3% to 23% in the ultimate lateral load, and a devia-
tion ranging from -30.4% to 20.1% in the initial lateral stiffness. These errors indi-
cated that the accuracy of predicting the behavior of RC frames is highly dependent 
on the chosen lp equation. Finally, the proper lp equation which could represent 
the nonlinear behavior of RC frames accurately was recommended.  
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1. Introduction 

Reinforced Concrete (RC) Frame structures are com-

monly used in construction due to their strength and 

durability. These frames are modeled and designed to 

resist lateral loads, such as wind and earthquake loads. 

Two main general approaches are used to model the RC 

frame structures accounting for material nonlinearity: 

lumped (concentrated) inelasticity and distributed ine-

lasticity (which includes fiber models). Lumped plasticity 

(plastic hinge; PH) approach had been used for modeling 

RC frames under lateral loads since the 1960s.  

The nonlinear behavior of the flexural PH plays a domi-

nant role in determining the RC frame response (Sunil & 

Kamatchi 2022, Inel & Ozmen 2006).The PHs exist at 

maximum bending moments that sections were associ-

ated with yielding of steel reinforcement or compression 

failure of concrete. In order to simplify PH modeling, re-

searchers had attempted to represent the PH zone with a 
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constant length known as the flexural PH length (𝑙𝑝). To 

accurately model these PHs, the curvature and strain are 

integrated over the 𝑙𝑝. The behavior of PHs and conse-

quently the global nonlinear behavior of RC frames are 

highly influenced by 𝑙𝑝 value.  

2. Review for PH Length (𝒍𝒑) Equations  

Several empirical equations for estimating lp were intro-

duced. There are important parameters that influence 

the 𝑙𝑝  value such as the section depth, the steel rein-

forcement yield stress, the concrete compressive 

strength, the shear strength, and the bar diameter of lon-

gitudinal reinforcement. Various studies had presented 

empirical equations to estimate lp for different types of 

RC elements.   

2.1. Chan (1955) 

Chan (1955) suggested Equation (1) to determine lp 

based on experimental tests for three types of speci-

mens: nine members with transverse ties steel rein-

forcement, seven members with transverse spiral steel 

reinforcement, and seven members with transverse 

welded ties steel reinforcement. 

𝑙𝑃 = 𝑍(1 − 𝑀𝑦/𝑀𝑢)                   (1) 

Where, Z is the shear length (moment to shear ratio), and 

𝑴𝒚 𝐚𝐧𝐝 𝑴𝒖 are the yield and ultimate moment, respec-

tively. 

2.2. Baker (1956) 

Baker presented Equation (2) to determine the PH length 𝑙𝑃 

based on testing three types of specimens under bending 

moment and axial load: 32 members reinforced with cold 

work steel, 30 members reinforced with mild steel, and 32 

members reinforced with both mild steel and cold work 

steel. 

𝑙𝑃 = 𝑘1𝑘2𝑘3(𝑍 𝑑⁄ )0.25𝑑                  (2) 

where the factors 𝑘1, 𝑘2, and  𝑘3 were defined based on 

the concrete compressive strength (𝑓𝑐
′), the initial axial load 

(P1), and the capacity axial load (Po); as per ACI 318-05 

(2005) 

k1 =0.7 for mild steel or 0.9 for cold work steel 

k2 =1+0.5(P1/Po) 

k3 =0.9 – 0.01277(𝑓𝑐
′–11.7)    if  11.7˂𝑓𝑐

′˂32.2 MPa 

2.3. Cohn & Petcu (1963) 

Ten continuous RC beams with two spans were tested 

categorized into two groups in which the beams were 

loaded with a concentrated load at a specified distance 

from the central support, and were monotonically loaded 

until failure. The load distance for the first group was 40 

cm whereas it was 60 cm for the other group. They rec-

orded the results of lp obtained for 10 beams varied from 

0.3d to 0.9d where d is the effective depth of the beam. 

𝑙𝑃 = 0.3𝑑~0.9𝑑                   (3) 

2.4. Sawyer (1965) 

The inelastic deformation of RC frames was investigated 

based on a bilinear moment-curvature relationship with 

assumption that the ratio 𝑀𝑦/𝑀𝑢 is equal to 0.85, and 

the maximum moment at any section is equal to the ul-

timate moment). 

𝑙𝑃 = 0.075 𝑍 + 0.25 𝑑               (4) 

 

2.5. Corley (1966) 

The PH length 𝑙𝑃  was determined based on a test for 40 

simply supported beams. These beams were subjected to 

a concentrated load at the midspan. The results obtained 

for the 40 beams were fitted using the introduced Equa-

tion (5). Similar to Sawyer (1965), the 𝑙𝑃was a function 

in the effective section depth and the shear length of the 

beam.     

𝑙𝑃 = 0.2 𝑍 √𝑑⁄ + 0.5 𝑑              (5) 

2.6. Mattock (1967) 

Mattock (1965) made a study to determine lp based on 

37 beam tests with various parameters (effective depth, 

shear length, concrete strength, and yield stress of ten-

sion reinforcement). Mattock in 1967 presented a sim-
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plification to his previous study by introducing Equation 

(6). The 𝑙𝑃  was related to the section depth and the 

member shear length similar as Corley (1966) and Saw-

yer (1965). 

𝑙𝑃 = 0.05 𝑍 + 0.5 𝑑               (6) 

2.7. Zahn et al. (1986) 

Zahn et al. suggested Equation (7) to determine the PH 

length 𝑙𝑃  based on the tests of 14 RC columns (with dif-

ferent cross-sections) subjected to combined bending 

moment and axial load. The 14 RC columns comprised 

three types of section shapes: six square sections, two 

octangular sections, and six circular hollow sections. 

Consequently, Equation (7) was divided s into three 

sub-equations (7-1, 7-2, and 7-3), as following: 

𝑙𝑃 = 0.08𝑍 + 6𝑑𝑏 (0.5 + 1.67
𝑃1

𝑓𝑐
′𝐴𝑔

)  for 
𝑃1

𝑓𝑐
′𝐴𝑔

< 0.3 (7-1) 

𝑙𝑃 = 0.08𝑍 + 6𝑑𝑏                for 
𝑃1

𝑓𝑐
′𝐴𝑔

≥ 0.3 (7-2) 

𝑙𝑃 = 0.06𝑍 + 4.5𝑑𝑏     for circular hollow sections (7-3) 

where 𝑑𝑏 , 𝐴𝑔 and 𝑃1 are the diameter of longitudinal 

steel reinforcement, section gross area, and initial axial 

load, respectively. 

2.8. Priestly & Park (1987) 

Priestly & Park provided Equation (8) to determine the 

PH length 𝑙𝑃  based on two tests for short columns and 

two tests for slender columns (square and octangular 

sections). Equation (8) was completely identical to Equa-

tion (7-2) of Zahn et al. (1986).  

𝑙𝑃 = 0.08𝑍 + 6𝑑𝑏                 (8) 

2.9. Paulay & Priestly (1992) 

In 1992, Paulay & Priestly suggested to add the yield 

stress of longitudinal reinforcement 𝑓𝑦
𝑙  (MPa) to Equa-

tion (8), and presented by Equation (9) based on several 

tests on beams and columns. Also, they indicated that 𝑙𝑃  

for typical beams and columns in the typical floors are 

approximately 0.5h. 

𝑙𝑃 = 0.08𝑍 + 0.022𝑑𝑏𝑓𝑦
𝑙               (9) 

2.10. Sheikh & Khoury (1993) 

Sheikh & Khoury introduced Equation (10) to determine 

PH length 𝑙𝑃  based on several tests on the beams and 

columns. They simply assumed that 𝑙𝑃  for all RC ele-

ments was equal to the section depth, h.   

𝑙𝑃 = ℎ                    (10) 

2.11. Panagiotakos & Fardis (2001) 

Panagiotakos & Fardis proposed Equation (11) for estimating 

PH length 𝑙𝑃  by testing over than 1000 specimens. These 

specimens consisted of RC members subjected to uniaxial 

bending, with and without axial loads. These members rep-

resented the different characteristics of the beams, columns, 

and shear walls. There were 266 beam specimens with un-

symmetrical steel reinforcement under uniaxial moment, 682 

column specimens (rectangular and square cross-sections) 

with symmetrical reinforcement under axial loads, 23 column 

specimens with diagonal reinforcement, and 61 shear wall 

specimens with rectangular or T cross sections. 

𝑙𝑃 = 0.18𝑍 + 0.021𝑎𝑠𝑙𝑑𝑏𝑓𝑦
𝑙                       (11) 

where 𝑎𝑠𝑙  is a longitudinal bar pullout factor; zero–one 

variable. If slippage of the longitudinal reinforcement is 

possible, 𝑎𝑠𝑙  is equal to a value of zero, whereas if slip-

page is not possible, 𝑎𝑠𝑙  is equal to a value of one. 

2.12. EN 1998-3:2005 Eurocode8 (2005) 

Eurocode8 provided Equation (12) to determine the PH 

length for members with earthquake reinforcement de-

tails and for those without lapping of longitudinal bars in 

the section where yielding is expected. 

𝑙𝑃 = 0.1𝑍 + 0.17ℎ + 0.24𝑑𝑏𝑓𝑦
𝑙/√𝑓𝑐

′         (12) 

2.13. Bae & Bayrak (2008) 

Bae & Bayrak (2008) suggested Equation (13) to deter-

mine the PH length 𝑙𝑃  based on an experimental and 

analytical research focusing on the seismic behavior of 

RC columns. Four RC columns were tested under axial 

load values ranging from moderate to high relative to 

their capacities. 

𝑙𝑃 = 𝑍 (0.3
𝑃1

𝑃𝑜
+ 3

𝐴𝑡

𝐴𝑔
− 0.1) + 0.25ℎ ≥ 0.25ℎ      (13) 
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where 𝐴𝑡 is the tension steel reinforcement area. 

2.14. Berry et al. (2008) 

Berry et al. presented Equation (14) to determine the PH 

length 𝑙𝑃  based on the data of 37 tests of large-scale 

circular bridge columns. Their equation was a function in 

𝑍, 𝑑𝑏 , 𝑓𝑦
𝑙 , and 𝑓𝑐

′ similar to Equation (12) with excluding 

h. 

𝑙𝑃 = 0.05𝑍 + 0.1𝑑𝑏𝑓𝑦
𝑙/√𝑓𝑐

′         (14) 

3. Case of Study 

Two single bay one-story frame structure specimens 

(Figure 1) tested by Dautaj & Kabashi (2019) were non-

linearly analyzed under pushover load. The PH length 𝑙𝑃  

was estimated ten alternative equations selected from the 

review (section 2). Table 1 presents the ten 𝑙𝑃  studied 

equations. For concrete properties, the compressive 

strength (𝑓𝑐
′)  and the compressive strain (ɛ𝑐 ) were 20 

MPa and 0.19%, respectively. The yield stress of the lon-

gitudinal steel reinforcement (𝑓𝑦
𝑙) was 620 MPa and 590 

MPa for, respectively, for model 1 and model 2. The gen-

eral geometry of the two RC frames are shown in Figure 

1. For the frame dimensions, the span frame (L) and 

height (H) for model 1 were 2550 mm and 2075 mm, re-

spectively, whereas they were 2500 mm and 2070 mm, 

respectively, for model 2. For the two models, 20 kN con-

stant vertical force was applied at the top of each column 

as shown in Figure 1. For frame 1, the cross section for 

both the beam and the column was 150×250 mm with 6 

bars of 10 mm diameter as a longitudinal steel rein-

forcement and 6 mm diameter ties spaced every 75 mm 

as a transverse reinforcement. For frame 2, the cross sec-

tion for both the beam and the column was 150×300 mm 

with 8 bars of 10 mm diameter as a longitudinal steel re-

inforcement and 6 mm diameter ties spaced every 75 mm 

as a transverse steel reinforcement. The two frames were 

simulated under pushover analysis using SAP2000 soft-

ware (CSI 2020).   

The RC frame models were simulated using bar element 

with two nodes for the columns and the beam. They were 

defined as elastic elements. The cross-section was discre-

tized into fibers using the section designer tool (Figure 2). 

The PH was defined and the 𝑙𝑃  was set according to Ta-

ble 1 as shown in Figure 3. The PHs were assigned to the 

frame members at the maximum moment positions (Fig-

ure 4). The PH ID was element type-PH-plastic hinge posi-

tion. For example, CPH1 refers to PH at the start (1) of a 

column member (C).  

 

 

 

 

 

 

 

 

Figure 1. Details of frame 1 and frame 2 (Dautaj & Kabashi,  

2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Section designer tool in SAP2000 to desctize the RC 
cross-section into fibers (CSI 2020) 
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Figure 3. Definition of the PH and setting lp length (CSI 2020)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Assigning the PH to the frame members (CSI 2020) 

 

4. Results 

The ten equations presented in Table 1 were investigat-

ed for the two frames models presented in Figure 1. PH 

lengths 𝑙𝑃  values determined from these equations 

were presented in Table 2. Using SAP2000, the lateral 

response curve for each trial was determined (Figure 5). 

Based on these results, the ten equations were catego-

rized into two groups according to the average error in 

the initial stiffness (∆K) of each trial compared with the 

reference experiment (Table 2). The trials, which result-

ed in higher initial stiffness K than the experimental test, 

were gathered in group 1, whereas group 2 contained 

the trials which produced initial stiffness K smaller than 

the reference experiment. It is worth mentioning that the 

initial stiffness was used to compare the results because 

the ultimate lateral load was always overestimated for 

the twenty trials and its average error was 18.3% and 

15.8% for the ten investigations of frame 1 and frame 2, 

respectively. 

Figure 6 and Figure 7 show the lateral load–

displacement curves resulted using these equations 

compared with reference experiment for the studied 

frame 1 and frame 2, respectively. It was observed that 

Equation (13) exhibited the maximum positive deviation 

in the initial stiffness with average values of 20.1%, 

whereas Equation (12) showed the maximum negative 

deviation of -30.4%. This could be attributed to the value 

of the PH length where Equation (13) provided the 

smallest plastic hinge length (62.5 mm for model 1 and 

75 mm for model 2), whereas Equation (12) produced 

the largest PH length (average 478 mm for the two mod-

els). This implies that increasing the PH length lp de-

creases the lateral initial stiffness and vice versa. Defi-

nitely, a higher lp means more deformation and weaker 

frame with lower lateral initial stiffness. Conversely, 

Equations (2) and (9) resulted in the minimum absolute 

deviations in the initial stiffness with average values of 

only 0.4% and -0.7%, respectively. This could be at-

tributed to the value of the PH length lp where the aver-

age lp of Equations (2) and (9) for the two models was 

210 mm which is approximately equal to the average lp 

of the extreme Equations (13) and (12).   

Finally, it was found that Equations (2), (9), and (14) ex-
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hibited the best nonlinear behavior curve with the least 

absolute deviation in the initial stiffness; 0.4%, -0.7%, 

and 2.9%, respectively. 

These findings highlighted the importance of carefully 

selecting a proper equation to represent the PH length in 

order to ensure accurate nonlinear predictions of the RC 

frames behavior. Further research and analysis are 

needed to improve the accuracy of these equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The lateral response cuvre using SAP2000 (CSI 2020) 

                        Table 1. The selected ten PH length lp equations for the case study 

N⁰ Equation Reference 

Equation (2) 𝑙𝑃 = 𝑘1𝑘2𝑘3(𝑍 𝑑⁄ )0.25𝑑 Baker (1956) 

Equation (5) 𝑙𝑃 = 0.2 𝑍 √𝑑⁄ + 0.5 𝑑 Corley (1966) 

Equation (6) 𝑙𝑃 = 0.05 𝑍 + 0.5 𝑑 Mattock (1967) 

Equation (8) 𝑙𝑃 = 0.08𝑍 + 6𝑑𝑏 Priestley & Park (1987) 

Equation (9) 𝑙𝑃 = 0.08𝑍 + 0.022𝑑𝑏𝑓𝑦
𝑙 Paulay & Priestly (1992) 

Equation (10) 𝑙𝑃 = ℎ Sheikh & Khoury (1993) 

Equation (11) 𝑙𝑃 = 0.18𝑍 + 0.021𝑎𝑠𝑙𝑑𝑏𝑓𝑦
𝑙 Panagiotakos & Fardis (2001) 

Equation (12) 𝑙𝑃 = 0.1𝑍 + 0.17ℎ + 0.24𝑑𝑏𝑓𝑦
𝑙/√𝑓𝑐

′ EN 1998-3:2005 Eurocode8 (2005) 

Equation (13) 𝑙𝑃 = 𝑍 (0.3
𝑃1

𝑃𝑜

+ 3
𝐴𝑡

𝐴𝑔

− 0.1) + 0.25ℎ ≥ 0.25ℎ Bae & Bayrak (2008) 

Equation (14) 𝑙𝑃 = 0.05𝑍 + 0.1𝑑𝑏𝑓𝑦
𝑙/√𝑓𝑐

′ Berry et al. (2008) 

 

 

Table 2. PH lenght lp for the case study categroized in two groups according to the deviation in the initial stiffness  

Group 
 number 

Model ID 𝒍𝑷 for the PHs of Model 1 (mm) 𝒍𝑷 for the PHs of Model 2 (mm) ∆K 
% PH Label BPH1 BPH2 CPH1 CPH2 BPH1 BPH2 CPH1 CPH2 

G
ro

u
p

 1
 

Equation (13) 62.5 62.5 62.5 62.5 75 75 75 75 20.1 

Equation (8) 147.2 157.1 134.7 143.7 139.2 156.1 130.7 138.9 8.2 

Equation (5) 129.4 131 127.3 128.8 151.8 154.4 150.6 151.8 6.3 

Equation (14) 194 200 186 191 183 194 178 183 2.9 

Equation (9) 224 234 212 221 210 226 201 209 0.4 

G
ro

u
p

 2
 

Equation (2) 188.6 193.8 183.5 188.7 214.8 225.4 210.8 216.6 -0.7 

Equation (11) 321 343 293 313 297 335 278 296 -11.1 

Equation (10) 250 250 250 250 300 300 300 300 -13 

Equation (6) 136.9 139.3 133.7 136 159.9 164.1 157.7 159.8 -16.4 

Equation (12) 485 497 469 480 470 491 460 470 -30.4 

 

1
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Figure 6. Lateral response of model 1 using the ten 𝑙𝑝 equations versus experiment (Dautaj & Kabashi, 2019) 

 

Figure 7. Lateral response of model 2 using the ten 𝑙𝑝 equations versus experiment (Dautaj & Kabashi, 2019) 

 

4. Conclusion  

This work was motivated to study the effective of using 

various equations of PH length 𝑙𝑝 in modeling the RC 

frames. A review of past studies for flexural plastic hinge 

length was introduced. Furthermore, a case study of the 

nonlinear behavior of two one-story RC frames under 

pushover analysis incorporating ten 𝑙𝑝 equations from 

the literature was conducted using SAP2000. The fol-

lowing conclusions can be drawn: 

1- The average error in ultimate lateral load was 17.05% 

for the all the twenty investigations of both the studied 

frames. The error value is acceptable for such simple 

analysis. Better accuracy could be achieved by finding 

more reliable estimation for the 𝑙𝑝 based an intensive 

experimental plan and by considering new parameters 

such as the frame type whether strong or weak and the 

slenderness of the columns. Definitely, using a more ad-

vanced model such the distributed plasticity or full finite 

element analysis will improve the accuracy. 

2- The average deviation in the initial lateral stiffness 

ranged from +20.1% to -30.4%.  

3- The equation of Pauley & Priestly (1992) and the 

equation of Baker (1956) were the proper expressions to 

determine the PH length 𝑙𝑝 to match the real initial stiff-

ness of RC frame; minimum deviations of +0.4% and 
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-0.7% was recorded for the two equations, respectively. 

4- The Bae & Bayrak (2008) equation led to the largest 

overestimation in the initial lateral stiffness of the RC 

frames (+20.1%). 

5- The Eurocode8 (2005) equation led to the largest un-

derestimation in the initial lateral stiffness of the RC 

frames (-30.4%). 

6- Although similar parameters were used for the high-

lighted four equations in the previous three items, the 

results of these equations were different. Therefore, not 

only the utilized parameters but also the coefficients of 

these parameters govern the accuracy of a certain em-

pirical equation. In other words, the sample used to de-

rive the equation has direct influence on its accuracy.    

7-Increasing the plastic hinge length led to decreasing 

the lateral stiffness of the RC frame and vice versa. 

8- Significant variation in the nonlinear response of the 

RC frames was noticeable for different 𝑙𝑝 lengths based 

on the utilized 𝑙𝑝 equation.      
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