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  Abstract 

For decades, the prediction of protein three-dimensional structure from amino 

acid sequence has been a magnificent challenge problem in computational 

biophysics. This research topic has drawn scientists from a variety of areas of 

study, including biochemistry and medicine, due to its inherent scientific interest 

as well as the numerous potential applications for reliable protein structure 

prediction algorithms, ranging from genome comprehension to protein function 

prediction. In the past decade, there has been a significant improvement in 

methods for protein structure prediction and design. New data-intensive and 

computationally demanding approaches for structure prediction have been 

developed as a result of increases in computing power and the rapid growth of 

protein sequence and structure datasets. These approaches typically begin by 

assuming a probability distribution of protein structures given a target sequence 

and then finding the most likely structure; however, computer scientists 

formulate protein structure prediction as an optimization problem in finding the 

structural solution. Homology modeling, also known as Comparative modeling 

of the 3D structure of a protein by utilizing structural information from other 

known protein structures with good sequence similarity, is employed in our 

study. Homology models contain significant information about the spatial 

organization of key residues in the protein and are frequently employed in drug 

design for screening large libraries using molecular docking techniques. The 

generic structure prediction flowchart is followed by presentations and 

discussions of important concepts and techniques. 
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1. Introduction  

Understanding protein structure is an essential beginning 

toward sensible structure-based drug development and 

virtual molecular library screening. The finely 

customized 3-D structures of naturally evolved proteins, 

which are determined by their genetically encoded amino 

acid sequences, enable the study of the wide variety of 

molecular functions carried out by these proteins. As a 

result, an analytical understanding of the association 

between amino acid sequence and protein structure could 

open up opportunities both for the rational engineering of 

different protein functions by designing amino acid 

sequences with specific forms and by 

predicting functions from genome sequence data. The 

ability to predict and generate the 3-D structures of 

proteins has grown significantly over the last ten years, 

and these developments could have significant medical 

and biological ramifications (Huang et al., 2023). To 

identify structurally interacting residues exclusively from 

sequence information, new machine-learning methods 

have been created that examine the patterns of linked 

mutations in protein families. For the first time, enhanced 

protein energy functions have made it achievable, to 

begin with a rough structure prediction model and 

develop it along energy-guided lines until it closely 

matches the empirically observed structure (AlQuraishi, 

2021). 

2. Literature review: 

Protein conformational sampling and sequence 

optimization advancements have made it possible to 

construct unfamiliar protein structures and compounds, 

some of which have medicinal potential. In (Wang et al., 

2017) Wang et al. applied the deep learning method to 

enhance the predicted residue contacts using CCMPred 

which uses a 60-layer ResNet to count all residue pairs 

concurrently, the suggested methodology RaptorX-

Contact has excellent correctness in predicting inter-

residue contacts. In 2018, Senior et al. proposed 

AlphaFold, producing the last structure utilizing 

optimization rather than sampling to accomplish protein 

prediction with enhanced accuracy and hardiness which 

is built on a potential of mean force stimulated by the 

predicted distance map of the goal protein using a simple 

gradient descent procedure. In (Mirabello & Wallner, 

2019), Mirabello et al. offered raw MSA (an end-to-end 

prototype) using raw MSAs as input. Raw MSA uses the 

embedding concept from natural language processing, 

which plots a protein sequence into an adaptively learned 

uninterrupted space.  (Ingraham et al., 2019), Ingraham et 

al. suggested an end-to-end prediction method called 

NEMO which presented the potential to construct 

multimodal predictions and confirm overview capability 

which comprises a neural energy function and an 

unfolded Monte Carlo simulator that simulates the 

folding process, (AlQuraishi, 2019), Al Quraishi 

proposed RGN, another end-to-end differentiable 

prototype through a neural network that enhances both 

local and global geometry simultaneously. In (Mao et al., 

2019) Mao et al. offered GDFold, a methodology for 

speedy protein structure prediction utilizing a neural 

network. The methodology predicts inter-residue contacts 

with its architecture improved concluded and utilizes all 

of the predicted inter-residue contacts rather than 

counting the top-scored contacts only. (Yang et al., 2020), 

Yang et al. proposed the trRosetta process, which uses 

deep neural networks to assess inter-residue distance, 

dihedral torsion angles, and the relative direction of long-

distance residue pairs. trRosetta builds an energy function 

utilizing the predicted inter-residue distances and 

directions and then seeks the structure with the lowest 

energy. In (Huang et al., 2023), Rao et al. proposed a 

Transformer frame that learns protein structure and 

function from sets of homologous sequences ordered as 

several sequence alignments. The pattern, called ssMSA 

Transformer, inserts row, and column attention to utilize 

the protection management of residues and 

correspondence of aligned residues across the input 

sequences. This model exhibited wonderful 

implementation in predicting inter-residue contacts and 

protein structure (Huang et al., 2023). In 2022, Lin et al. 

proposed a very large protein language model ESM-2 

with 15 billion factors and then developed the prediction 

software ESMFold (Lin et al., 2022), even larger than the 

language models used by OmegaFold (670 million 

parameters). 

These researches showed the superpower of the language 

pattern in protein structure prediction. The planners of the 

CASP competitions examined the prediction tactics that 

joined CASP competitions and ascribed the improvement 

in prediction accuracy to the following key technologies: 

 

(i) The structure prediction uses segment assembles and 

substitution methods. 

(ii) utilizing knowledge of co-evolution to forecast inter-

residue interactions. 

(iii) using a deep learning technique to estimate inter-

residue distances, such as ResNet. 
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(iv) utilizing Transformer to estimate protein structure 

end-to-end and the spacing between residues. 

 

Scientists from a variety of fields, such as computer 

science, physics, biochemistry, medicine, and 

mathematics, have been attracted to the study of protein 

structure prediction. These researchers approached the 

same issue using several research paradigms. To 

comprehend their advantages and disadvantages, we will 

compare different study paradigms in this article. 

Homology modeling is quickly replacing older methods 

for acquiring the 3D structure coordinates and other 

valuable structural and functional insights with the 

introduction of new modeling tools and algorithms. 

Homology modeling has recently made significant 

advances, particularly in the areas of loop and side-chain 

modeling, model validation, and evaluation. Until 

recently, it was not possible to predict accurate models of 

protein structure. Improvements in sequence 

search/analysis, scoring systems, and tertiary structure 

prediction approaches enable the creation of robust, error-

free models with high statistical significance. The 

advancement of this technique has been further aided by 

freely accessible, easy-to-use modeling servers and 

structure validation tools.  

 

3. Methodology  

The majority of the currently used methods successfully 

utilize the relation between sequence and structure as well 

as the evolutionary data contained by the target protein's 

homologous proteins to predict structure. The present 

methods can be categorized between template-based 

modeling (TBM), which needs template proteins, or 

proteins with known structures, and free modeling (FM, 

also known as ab-initio approaches), which does not 

require any templates. The homology modeling and 

threading TBM techniques can be further classified. 

Following is a detailed description of the fundamental 

concept and representative software implementations of 

various approaches. 

3.1. Protein structure prediction  

There are two general methods for predicting the 

structure of a protein of interest (the "target"): template-

based modeling, in which the target's structure is modeled 

using the structure of a related protein that has already 

been determined, and template-free modeling, which 

does not rely on a structure's overall similarity to one in 

the PDB and can therefore be used for proteins with novel 

folds. Here, we briefly introduce template-based 

modeling techniques. Next, we continue to template-free 

modeling and demonstrate recent advancements in that 

field (Eisenberg et al., 1992).  

 

3.1.1. Template-based modeling  

Finding a proper structural template, alignment of the 

target sequence to the template structure, and molecular 

modeling to take into account alterations insertions, and 

removals that were present in the target-template 

alignment are the stages in usual template-based 

modeling. By searching the PDB sequences with single-

sequence search tools like BLAST (Altschul et al., 1997), 

it is feasible to recognize templates that are tightly related 

to one another. A target sequence profile (Eddy, 1998) 

generated from a multiple-sequence alignment can be 

employed to search a database of sequence profiles for 

proteins with known structures by profile-to-profile 

comparison or to correspond to a collection of structural 

templates to identify compatibility between sequences 

and structures to find closely related templates. After 

developing a model, template choice techniques 

frequently return an original target-template alignment 

that can be directly altered. By performing side-chain 

optimization only on altered sites and reconstructing the 

backbone surrounding these modifications. Established 

methods (Brownstein et al., 2017) can be implemented to 

quickly construct molecular models of the target 

sequence provided an alignment to a template. More 

complicated techniques utilizing multiple templates and 

broad backbone structural sampling may be required to 

target protein sequences that are only indirectly 

connected to proteins with known structures (Brownstein 

et al., 2017).   

3.1.1.1. Threading methods 

The method is also known as the Fold Recognition 

Method. It is also known as fold recognition because the 

recognition of the Template is a problem in and of itself. 

Comparative modeling-like procedures apply to 

threading. The goal of all methods is to identify "folds" 



Abul Seoud et al. 
 

 

DOI: 10.21608/fuje.2024.345050 341 Fayoum University Faculty of Engineering, 2024, Vol: 7 (2)  

 

from a library of folds of known protein structures. The 

threading algorithm for protein structure prediction 

matches sequences without known structure with protein 

folds using a library of recognized three-dimensional 

structures. From the database of protein structures, a 

collection of unique protein folds is derived. Using 

threading techniques, a Target sequence is compared to a 

collection of structural Templates. This technique 

benefits from being aware of the pre-existing structures 

in the database and the physical characteristics that 

stabilize them. 

 

3.1.1.2. Homology modeling 
 
The idea behind homology modeling is that as homology 

proteins, especially the close homology proteins, 

typically share similar structures, and as protein 

structures are more conserved than sequences during the 

evolutionary process, we can construct a structure for a 

target protein by referring to the structures of its 

homologies (Figure 1B). "Sequence-sequence" alignment 

is a popular technique for finding homologies between a 

target protein and other proteins. If the sequence 

alignment of two proteins reveals a substantial amount of 

sequence similarity, they will be regarded as homology 

proteins (Speed, 2002). Running structure modeling 

programs, such as MODELLER (Speed, 2002), allow for 

the construction of the target protein's structure based on 

the target protein's acquired alignment with a homology 

template. In this approach, the sequences of target 

proteins and templates serve as representations The 

MSAs, PSSM, and profile hidden Markov model 

sequences of homologous proteins (Altschul et al., 1997) 

are efficient in enhancing the sensitivity of homology 

detection. PSI-BLAST (Altschul et al., 1997), PDB-

BLAST (Speed, 2002), SAM-T99 (Altschul et al., 1997). 

are examples of excellent homology detection or 

homology modeling software programs. 

 

The steps of the multi-step homology modeling method 

can be summarized into the following: 

1) Recognition and alignment of the template.  

2) Alignment optimization. 

3) model creation, which entails side chain, loop, and 

backbone generation. 

4) Model improvement. 

5) verification.  

Obtaining the Target protein sequence from several freely 

accessible databases is the first and most important step. 

The following procedure is template identification, which 

involves choosing a protein template whose 3D 

coordinates are known and which has the greatest 

similarity to the target sequence. Sequence alignment is 

used to compare the Target and Template protein 

sequences. BLAST (Basic Local Alignment Search Tool) 

is the alignment algorithm that is used the most 

frequently. The Template should not have an E-value 

greater than 1 for the Target and Template sequences to 

align well. Aligning two sequences in a location with a 

relatively low percentage of sequence identity can 

occasionally be challenging. This problem is fixed by 

employing numerous Templates that are homologous to 

the Target protein and actively correcting the alignment. 

Model creation begins upon the achievement of an ideal 

alignment. The exactness of the alignment created and the 

validity of the Template are recognized to have a 

significant impact on the quality of the model produced. 

The likelihood of the model being wrong decreases if the 

alignment is precise. The coordinates of those Template 

residues that appear in the alignment with the model 

sequence can be duplicated in a model creation if the 

sequence alignment is strong. Only the backbone 

coordinates (N, Cα, C, and O) are replicated when two 

aligned residues are different. As a result of base or amino 

acid insertions and deletions, the Target-Template 

alignment may have spaces. 

 

 
 

Figure 1: Protein sequence, protein structure, and protein structure 

prediction (Jiang et al., 2013) 
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A sample of protein sequence and its tertiary structure. 

Here, figure 1 displays a C-terminal fragment of the 

ribosomal protein L7/L12 from Escherichia coli (PDB 

ID: 1CTF), which contains a full of 74 residues connected 

via peptide bonds. The tertiary structure states the unique 

3D coordinates of each atom in the relative position of the 

entire protein. Cartoon backbone illustration is 

extensively utilized to envision protein tertiary 

structure. B. Homology modeling method for protein 

structure prediction C. Threading method for protein 

structure prediction. D. Ab initio prediction approach. 

PDB, Protein Data Bank; ID, identification; 3D, 3-

dimensional. 

 

3.1.2. Template-free modeling  

Proteins lacking a general structural connection to a 

protein in the PDB can use template-free modeling 

techniques. These approaches require a conformational 

sampling strategy to produce native-like conformations in 

the absence of a structural template. without a template, 

the structure prediction process. The target protein and 

associated sequences are first assembled into a multiple-

sequence alignment. Then, local structural properties like 

secondary structure and backbone torsion angles are 

predicted using the sequences of the target and its 

homologs, as well as non-local structural features like 

residue-residue interactions or inter-residue distances 

across the polypeptide chain. The construction of 3D 

models of the target protein structure is guided by these 

anticipated properties, which are later improved, rated, 

and compared to one another to choose the final 

predictions. 

3.1.2.1. Ab initio prediction methods 

When no appropriate homolog is located in the database, 

ab initio prediction is used. It is predicated on Anfinsen's 

theory that the protein's natural state represents the 

world's lowest possible level of free energy. These global 

minima of the protein are searched for using ab initio 

approaches. To explore the conformational space in the 

free energy landscape and obtain the global minima, the 

correct native-like conformation must be found.   

Homology modeling steps 

Homology modeling is also called comparative modeling, 

which is used to predict the 3D structure of a protein with 

an unknown structure by using the known structure of a 

homologous protein. The process of homology modeling 

is run by seven classical steps. In this paper, SWISS-

MODEL is used for prediction which is a fully automated 

protein structure homology-modeling server, accessible 

via the Expasy web server.  

 

1. Identification and selection of templates 

First, we start searching for a template based on 

sequence–sequence alignment, from Protein Data Bank 

Protein Data Bank (PDB) e. Second, the computation of 

an accurate alignment must be feasible between the 

Target sequence and the Template structure as shown in 

Figure 2 and Figure 3. Overall model accuracy can be 

predicted by the degree of sequence similarity between 

the Target and the Template. To identify templates, there 

are many tools to detect alignment methods e.g. 

HMMER, PSI-BLAST, HMM, SAM, and HHsearch. In 

the case of low homology ( identity below 35%; the 

number of identical amino acids in an alignment), we use 

other methods are used for alignment to reduce shifts and 

gaps such as profile-profile alignments, Hidden Markov 

Models (HMMs) and position-specific iterated BLAST 

(psi-BLAST) to reduce gaps in the alignment.  

 

Figure 2: A typical residue exchange or scoring matrix used by 

alignment algorithms (Jiang et al., 2013) 

https://thebiologynotes.com/amino-acids-proteins/
https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
https://www.expasy.org/
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-data-bank
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-data-bank
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hidden-markov-model
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hidden-markov-model
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Figure 3: The alignment matrix for the sequences 

VATTPDKSWLTV and ASTPERASWLGTA, using the scores from 

Figure 2  

2. Alignment of the Query Sequence with the 

Template: 
 

The scoring function is properly optimized to determine 

an alignment. For matching residues in the Target and the 

Template sequence, a substitution score matrix and a gap 

penalty function are included in a scoring function. A 

program for multiple sequence alignment is used to look 

for structurally conserved regions. Figure 4 shows the 

target template ‘cytoplasmic’ If there are many available 

templates there are many factors such as sequence 

identity and similarity, alignment scores, and 

phylogenetic relationships that should be considered, as 

well as other information such as biological function and 

environmental context. 

 Using multiple sequence alignment, insertions and 

deletions can be done in very different regions of the 

molecule. To make gaps as tiny as possible, they must be 

moved. One or more empty spaces that are aligned with 

letters in the opposite sequence are known as gaps. To 

ensure a good alignment, it is recommended to choose to 

model only that part of the sequence that aligns without a 

large number of gaps in the alignment. Further, alignment 

errors are the main cause of deviations in comparative 

modeling even when the correct Template is chosen. 

In the alignment, gap positions should lie outside the 

secondary structures and in the loop areas. It is also 

recommended to integrate accessory information 

about secondary structures, conserved family 

residues, transmembrane helices, active site 

residues, etc. into the alignment to improve its 

accuracy.  

 

 
a: Target protein 

 

b: Alignment 

 
Figure 4: “a” is the target protein, “b” is the alignment of the query 

 

3. Building a Three-Dimensional Model of 

the Query Protein: 
 

Sequence alignment is followed by the creation of the 

target proteins' three-dimensional models. Different 

techniques are used to create 3D representations of 

proteins using their templates. Rigid-body assembly, 

segment matching, spatial restraint, and artificial 

evolution methods are the four groups into which these 

techniques are divided. The protein structure is divided 

into basic conserved core sections, loops, and side chains 

during rigid-body assembly. With the aid of programs 

like 3D-JIGSAW, BUILDER, and SWISS-MODEL, the 

rigid body parts are extracted from the template protein 

structures and assembled as explained in Figure 5. 
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Figure 5: 3D structure of the target protein sequence 

4. Loop Modeling 
 

When modeling proteins, sequence alignments may 

have gaps or insertions. Loops are a type of gap that has 

undergone less structural conservation throughout 

evolution. Because loops are so critical in defining how 

a protein functions, loop modeling is a crucial stage in 

protein structure prediction. In the majority of cases, the 

alignment between the model and template sequence 

contains gaps. Either gap in the model sequence 

(deletions)or in the template sequence (insertions). In the 

first case, one simply omits residues from the template, 

creating a hole in the model that must be closed. 

 In the second case, one takes the continuous backbone 

from the template, cuts it, and inserts the missing 

residues. There are generally two methods of loop 

modeling: 1) by finding similar loops in similar proteins 

and 2) by generating the segment. Finding loops from 

similar proteins is done by taking some residues before 

and after the insertion as “anchor” residues and 

performing the loop search against databases like PDB 

with similar anchor residues. The best-fitting loop is 

copied to the model. Loop selection must be done by 

carefully examining it for steric overlaps, and by 

checking loop atoms against the rest of the protein’s 

atoms. 

 

5. Side Chain Modeling  

 
Side chain modeling is the process of predicting the 

conformation of the side chains of amino acids in a 

protein structure. This process is crucial in evaluating 

protein-ligand and protein-protein interactions. 

 
Figure 6: Example of a backbone-dependent rotamer library (Harder 

et al., 2010) 

 

This is usually done by placing the side chains onto the 

backbone coordinates that are derived from a parent 

structure or ab initio modeling simulations as explained 

in Figure 6. Searching every possible conformation of a 

side chain is computationally time-consuming and not 

effective so, most side chain prediction programs use the 

preferred conformation called rotamers. These rotamers 

are stored in a rotamer library, which is a collection of 

preferred side chain conformations ranked by their 

frequency of occurrence. Different energy functions and 

search strategies are used to select the most appropriate 

rotamer for each amino acid side chain based on the 

preferred protein sequence and the given backbone 

coordinates. There are various tools available for side 

chain modeling, such as RAMP and SCWRL.  

 

6. Model optimization 
 

it is used to optimize the quality of the final model. This 

step is done by using energy minimization utilizing 

molecular mechanics force fields, to reduce atomic 

clashes, and exclude all major and small errors. Further 

optimization can be done using molecular dynamics and 

Monte Carlo simulations.  

 

7. Model Validation and Evaluation 
 

To make sure that the 3D model of the query protein is 

suitable. Every homology model contains errors. The 

number of errors mainly depends on two values: The 

percentage sequence identity between the template and 

target. The number of errors in the template. The reason 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/energy-minimization
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/force-field
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may either be attributed to a low percentage sequence 

identity among Target and Template or an error in the 

Template. Therefore, the model must be evaluated for the 

overall correctness of the fold/structure, and 

stereochemical parameters like bond lengths and bond 

angles as shown in Figure 7. 

 

 
Figure 7: A pair of phi(Ø), psi(Ψ) dihedral angles that occur in a 

protein structure. 

 Other properties like the distribution of polar and 

nonpolar residues, bad contacts, etc. can also be 

compared with real structures. Validation can be of two 

types: Internal or External Validation. Internal 

Validation: Performed self-consistency checks. It deals 

with the assessment of the stereochemistry of the model 

like bond lengths, bond angles, dihedral angles, etc. It can 

be done by programs like WHATCHECK and 

PROCHECK. b. External Validation: Based on 

information that was not used in the calculation of the 

model. External validation involves the check over 

whether the correct Template was used (based on identity 

percent). This can be predicted by comparing the Z-score 

of the model and the Template structure. Z-score is the 

measure of the compatibility between a model’s sequence 

and its structure as indicated in Figure 8

 
Figure 8: Comparison between the Z-score of the model and the 

template structure which indicates that the model is accepted 

 

Figure 9 shows the similarity in all chains (A, B, C, D) 

concerning the high identity template according to the 

number of residues. The least similarity of the target 

sequence to template is greater than 40 % and the 

highest one is greater than 90 % which indicates the 

high quality of the target model. 

 
Figure 9: Similarity to target for all chains according to the number 

of residues 

SOLUTIONS AND RECOMMENDATIONS 

 
1. Structures with greater experimental support will yield 

the biggest gains. The likelihood that modeling 

assignments will accurately identify the fold will rise as a 

result of the correctness of the created model. 

2. The accuracy of the structure model can also be 

improved by further progress in the sequence-structure 
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alignment. The accuracy of the model is increased by a 

more aligned profile with fewer gaps. Using threading-

based strategies to match the sequence to structures 

discovered through comparative modeling may be one 

way to improve sequence-structure alignment. 

3. The majority of concerns and problems related to 

determining protein structural coordinates are resolved by 

protein tertiary structure prediction. When there is little 

sequence similarity and it is possible to model the target 

protein using numerous protein structural templates, 

multiple Template-based homology modeling can be 

used. 

4. By using molecular dynamic simulations, the modeled 

structure produced by homology modeling, threading, or 

even ab initio approaches can be improved. 

8. Conclusion 

In this study, important methods of protein structure 

prediction are introduced which are three basic 

approaches based on the query-template identity. We 

focus on homology modeling to predict the 3D structure 

of a target sequence using the SWISS model tool. The 

homology modeling is in a safe zone if the identity is 

greater than 30%. However, threading is used to predict 

protein structure when the query Template identity is less 

than 30%. In comparative modeling, the Target-Template 

alignment is used firstly to choose an appropriate 

Template. Once the alignment is correct, the real 

modeling process which includes backbone creation, 

side-chain modeling, and loop modeling, followed by 

Model validation and optimization.  

The selected Template and its alignment with the Target 

sequence play a significant role in the model's accuracy. 

The target model is evaluated according to the template 

sequence, which is accepted due to the high identity 

between them. The identity reached 85.02%, which 

indicates the minimum error for the target model. 
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